
Application Layer Error Correction Scheme

for Video Header Protection on Wireless Network

Chia-Ho Pan, I-Hsien Lee1, Sheng-Chieh Huang2, Chih-Chi Cheng, Chung-Jr Lian, Liang-Gee Chen

DSP/IC Design Lab, Graduate Institute of

Electronics Engineering and

Department of Electrical Engineering,

National Taiwan University, Taipei, Taiwan

1
Computer & Communications Research

Laboratories,

Industrial Technology Research Institute,

HsinChu, Taiwan

2
Electrical and Control Engineering

National Chiao-Tung University, HsinChu, Taiwan

Abstract

In wireless video streaming application, video in-
formation may be corrupted by a noisy channel. By

introducing error resilience and error concealment

techniques, many researchers have tried to eliminate

quality degradation of reconstructed picture in decod-
ing a corrupted data. On the contrary, there are

relatively fewer works discussing the ways to diminish

the corruption. Hence, system designers need to use

different methods to restrict the error cause by channel
within a tolerable extent. In other words, the system

will be difficult to be implemented in practical design.

In this paper, we propose a way to protect the video

header information in application layer without modi-
fying standardized syntax. Beside, we also consider

channel condition of wireless transmission and pro-

pose a way to reduce redundant bits used in channel

coding. By doing this, the bitstream can be simply
transmitted over practical wireless network and the

reconstructed picture quality outperforms the original

one.

1. Introduction

Multimedia communication has already played an

important role in our daily life. Amount them, provid-

ing a real-time video service over wireless network is

one of the most demanding applications. It’s well

known that fading channel and multi-path effect may

introduce different kinds of interference in wireless

transmission and these noisy channels usually corrupt

transmitted data and cause an unpredictable error. To

ease this problem, Forward Error Correction (FEC) has

been proposed. This scheme will embed some redun-

dant bits in the transmission data, and decoder will use

these information to correct the error caused by the

channel interference. However, the correcting ability of

FEC depends on the amount of redundancy embedded

in the system. In other words, there will be a limitation

of the correcting ability under the given redundant bit-

rate. Hence, transmitting information with FEC still

cannot ensure the original information will not be cor-

rupted by the noisy channel.

Unfortunately, the compressed video bitstream is

very sensitive to errors. This is because the property of

extracting video information into a small amount of

bits. Every single bit in the video stream takes impor-

tant information and losing it can make serious

problem in reconstructing video. For example, video

coding usually uses Variable Length Code (VLC)

scheme to compress video information. If an error oc-

curs at a VLC symbol, decoders will not correctly

identify this symbol. This error may also make the fol-

lowing data unusable because of the dependency of

these VLC symbols. It will be more serious if this sin-

gle bit error occurs at the header of a bitstream. As we

know, the header information takes the information

that will be used in video decoding. Losing this infor-

mation can terminate a regular decoding procedure. In

order to solve these problems, many error-resilience

and error-concealment methods have been proposed

[1][2][3][4]. Nevertheless, these works focus on using

spatial or temporal redundancy to conceal the error that

corrupt macroblocks (MBs) instead of discussing the

error occurred in header information.

Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05)
0-7695-2489-3/05 $20.00 © 2005 IEEE

It’s clear that all headers and extensions of the

higher syntactic layers, i.e. the picture layer, group of

pictures and sequence layer, contain critical informa-

tion for decoding. In the audio services of Digital

Audio Broadcasting (DAB) [5], transmitter will use

Cyclic Redundancy Checks (CRCs) to detect critical

audio frame header information because rendering an

audio frame with errors in the header is likely to result

in audibly unpleasant effects. Hence, DAB decoder

will ignore the frame if CRCs reports a potential cor-

ruption of its content. This method reveals the fact that

protecting the header information of a multimedia bit-

stream is an essential need of applicable multimedia

service. However, the characteristic of temporal pre-

diction in video coding renders the scheme of CRCs

not suitable to be used. Simply detecting a header error

and discard the corrupted frame in video decoding can

still make serious performance degradation. As a con-

sequence, the ability of correcting header error is an

important requirement and critical issue in practical

video transmission service.

In this paper, we propose a method to protect the

header information of video bitstream in application

layer. To satisfy the urgent of providing real-time

video service over wireless network, this method is

dedicatedly designed for the environment of wireless

system that we practically used today. Although many

researchers have provided ways to solve this problem

in different layers of Open Systems Interconnections

(OSI), these works either require a special designed

network procedure to support its idea or do not take

wireless channel effect into account. On the contrary,

our method can be applied in any networks or trans-

mission environments since the effort that we made is

confined in the application layer of OSI. Besides, the

proposed method can reduce redundancy used in chan-

nel coding since a corrupted bitstream can still be

corrected by our method. In our simulations, we will

demonstrate the proposed method outperforms other

methods under a limited bit-rate. Before describing the

detail of our method, we will briefly introduce the

ways that have been used in protecting video informa-

tion.

2. Review of Header Protection Schemes

As we have mentioned above, every bit of a multi-

media bitstream can represent different importance of a

reconstructed video sequence. Depending on the im-

portance of various parts of a multimedia bitstream,

Unequal Error Protection (UEP) [6] techniques can

adapt different amount of effort devoted to protect the

sub-bitstreams to errors. This technique can be used in

several different applications. For example, scalable

video coding contains a base layer which provides a

low but acceptable level of quality, and several addi-

tional enhancement layers to incrementally improve

the video quality. UEP will assign a more reliable sub-

channel, a stronger FEC code, or allowing more re-

transmissions [7][8] to ensure the correction of base

layer information. By doing this, we can expect the

important part of the bitstream will be well protected.

However, the existed network and protocol environ-

ments may not support UEP at the network level, and

this situation is not likely to change in the near future,

for both technical and economical reasons.

Figure 1. Unequal Channel Protection in Combination
with Data Partition.

As we have mentioned in section 1, losing the

header information of a bitstream can cause serious

performance degradation in video transmission service.

To solve this problem, Data partition technique [9] has

been introduce in MPEG-4 and many following up

video coding standards. In this technique, video bit-

stream is split into two partitions, the first containing

coding mode information for each macroblock together

with DC coefficients of INTRA block or motion vec-

tors for INTER blocks. The remaining data are placed

in the second partition. In combining with the tech-

nique of UEP, we can pay more effort on protecting the

information of the first partition that is adequate to

decode an acceptable video quality. As we can see in

Figure 1, the combination of data partition and unequal

error protection requires a more complex communica-

tion network to achieve its goal. This phenomenon

raises many doubts over how effective data partition-

ing is in real streaming systems. It is argued that

unequal error protection is either not easy to imple-

ment, or incur a large overhead in bit rate, or may not

be effective at all because the required up-to-date

channel information is not available.

Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05)
0-7695-2489-3/05 $20.00 © 2005 IEEE

In addition to the difficulty of implementing, data

partition only pay attention to the important informa-

tion of MB layer; the headers of higher syntactic layers

are not transmitted in a highly protective way. In the

existed standard, there is a way dedicated to protect the

headers of higher syntactic layers. Header Extension

Code (HEC) [9] allows important header information

to be duplicated at slice level. Since a VOP consists of

one or more video packets, the system attempts to start

a packet with a slice synchronization point of the video

bitstream by following up with a HEC. Hence, every

coded packets carry, in HEC, information relevant to

all slices of a frame. If the first packet is lost, it will

still be possible to decode any of the slices of the

frames by using the HEC information in other packets.

However, this scheme is only applicable in some spe-

cific networks. Furthermore, it cannot be always

applied in different video codecs. For example, H.263

contains no syntax element that allows including

redundant picture header information at the slice level.

This serious drawback requires to be compensated by

accompanying protocols such as RFC2429 [10].

3. Header Protection Scheme in Applica-

tion Layer

All methods that we mentioned in the section 2 try

to protect the header information of a video bitstream.

However these works are confined to use any other

layers of OSI but application layer. Because applying a

dedicated network procedure to achieve video service

can be an all-consuming work, these solutions may not

be effective ways in implementing a real-time video

service. In this section, we will introduce a way to pro-

tect video header in application layer. Because our

method will only embed slight redundant information

in original information, system provider can process

this protected data as a part of normal video bitstream.

Nevertheless, video decoder can use the redundant

information embedded in the bitstream to correct

header information. As a consequence, the quality of

reconstructed pictures will outperform that of the

original one.

3.1. Error Correction in Application Layer

In the proposed method, we also combine the simi-

lar concepts mentioned in data partition and unequal

error protection. Specifically, the most critical informa-

tion of the video bitstream, header information, will be

placed in a separated partition and error correction

code will be used to protect it. However, the proposed

process will be accomplished in the application layer

instead of using a complex system. After the error cor-

rection coding, the redundancy of the error correction

coding will be transmitted in combination with video

information as shown in Figure 2. As we can see, this

method only uses a single transport and physical chan-

nel that we practically used. In other words, it is no

need to adjust the FEC coding mode, transmission

power, or number of ARQ to increase correction prob-

ability of important information.

Figure 2. Proposed Application Layer Error Protection
Method.

Since we only take the header information of a

video bitstream into the first partition, the amount of

redundancy will be limited into a small value. In our

design, only 1 kbps additional bit-rate is required while

we use Hamming Code as the error correction method

in application layer. In addition, original header infor-

mation will not be affected after error correction

coding because of the characteristic of Hamming Code.

These phenomena raises the possibility to embed this

redundancy into the original bitstream. As we know,

there already have many popular video codecs in the

market. It is not reasonable to modify the syntax of the

existed standards. Hence, embedding the redundancy

into “user_data” if the video codec, such as MPEG-4,

will support the proposed idea. Because header infor-

mation will not be affected by the Hamming Code

coding procedure, this information will be still put into

the bitstream by following original syntax. That is to

say, a decoder that does not support application layer

error correction can still decode a bitstream, which is

encoded by the proposed method.

Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05)
0-7695-2489-3/05 $20.00 © 2005 IEEE

Figure 3. Redundant Code Rate Requirement of Chan-
nel Coding by using Convolution Code [11]

3.2. Transmission Rate Reduction

Although applying the proposed method will

slightly increase the amount of data by 1%, the trans-

mission rate will be reduced in wireless application.

On system point of view, the information of applica-

tion layer need to be further protected by FEC code.

The amount of FEC redundancy, code rate of channel

coding, depends on the Bit Error Rate (BER) that a

video decoder can tolerate. Specifically, a looser BER

requirement from application layer can result in less

redundant bit used in channel coding. Since different

information represents different importance in a video

bitstream, the requirement to have a correct header

information can determine the bound of BER value.

To demonstrate the advantage of the proposed idea,

we operate the video decoder at the requirement of

BER=10e-3. It’s a relatively loose BER constrain in

providing real-time video service. Under such a bad

channel condition, header information will be fre-

quently corrupted, hence, serious quality degradation

will occur. Nevertheless, the proposed method can

correct most of the corrupted header information while

video information is transmitted in this condition. To

facilitate the problem of corruption in header informa-

tion if header information is not well protected, people

generally operate the system at BER=10e-4. Figure 3

represents the code rate of channel coding that should

be selected to satisfy a fixed BER. As we can see,

while the signal to noised ratio is fixed at 5 dB, only

12.5% redundant information, rate 8/9, is required to

meet BER=10e-3 requirement. However, code rate 2/3

will be select to ensure application layer will have a

BER value of 10e-4. That means 50% redundant bits

will be used in channel coding. Hence, the proposed

method can also save total transmission bit rate in

practical use.

Table 1. Average PSNR comparison of the recon-
structed vide sequences with the header protection
scheme has been applied and has not been applied.

4. Experimental Results

In this section, we will demonstrate the proposed

methods by using two scenarios, which are practically

used in real-time video service. The first scenario is

often used in broadcasting service, that is to say, en-

coder do not have feedback information to adapt its

encoding process. Hence, errors will propagate all the

way until video decoder has a new INTRA block. Be-

sides, we also provide the second scenario that a

system has a feedback channel in video service to com-

pare with our design. In this case, video encoder will

be notified that a picture has been lost at decoding side

due to a corruption of picture header. By doing this,

video encoder will use proper information as reference

data and the error propagation will be confined in lim-

ited frames.

In the following simulations, we use Hamming

Code as the error correction code to protect header

information of a H.264 video bitstream [12]. These

header information include sequence layer header, pic-

ture layer header and slice layer header. The amount of

redundant bit to protect these headers is about 1kbps.

Errors are generated by using random noise at the BER

of 10e-3 in the following experiments. Then, this error

will be used to corrupt a header protected and not pro-

tected bitstream. Since both bitstreams have the same

error probability, the error occurred in the bitstream

except header information will be handled in the same

way. On the other hand, when the error occurred in the

header is detected, the following information belongs

to this header will be dropped. The corrupted frame

will be replaced by copying the information from the

nearest frame. Also, the header information in first

frame is excluded from errors. In order to evaluate the

performance, we have considered 3 video sequences

namely: Mother & Daughter(slow motion), Mo-

bile(complex motion) and Foreman(fast motion). All

of these sequences contain 300 frames and are coded as

IPPPPP..., that is the first frame is intra-coded and all

other frames are intercoded.

Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05)
0-7695-2489-3/05 $20.00 © 2005 IEEE

(a)

(c)

(e)

(b)

(d)

(f)
Figure 4. Illustrations of header protection effect at average PSNR when QP = 28. (a) Frame 91 of protected Foreman
sequence. (b) Frame 91 of unprotected Foreman sequence. (c) Frame 190 of protected Mobile sequence. (d) Frame
190 of unprotected Mobile sequence. (e) Frame 110 of protected Mother and Daughter sequence. (f) Frame 110 of
unprotected Mother and Daughter sequence.

Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05)
0-7695-2489-3/05 $20.00 © 2005 IEEE

Figure 5. Frame by frame luminance PSNR perform-
ance comparison with header protected and header
unprotected Foreman sequence at QP = 28.

Figure 6. PSNR degradation caused by the corrupted
higher layer header information for Foreman sequence
at QP=16, 28, 36, and 40.

Table 1 shows the PSNR value of decoding both

bitstream by using H.264 reference software

JM9.6[13]. Using neighboring frame information due

to a corrupted header will seriously corrupt recon-

structed picture in fast motion sequence because there

have quite a difference between two neighboring

frames. As we can see in Figure 4, the motion feature

of a video sequence also affects the amount of degrada-

tion in reconstructed frames. Fast motion video

sequence, Foreman, obviously more sensitive to the

lost of picture header and the reconstructed frames will

be serious degraded in this case. Figure 5 shows frame

by frame luminance PSNR value of decoding Foreman

sequence. Although some INTRA blocks in the follow-

ing frames will recover the corrupted picture to slightly

improve PSNR performance, these INTRA blocks still

cannot compensate the error caused by the corrupted

header. This error will propagate to all the other fol-

lowing frames and further degrades PSNR

performance. In order to evaluate the performance of

the proposed method in different bitrate, we encode the

Foreman sequence by using different Qp. Figure 6 is

the average PSNR value by decoding these bitstreams

under different bit-rates. As we can see in this figure,

the proposed method can at least outperform the origi-

nal one by 5dB. Furthermore, we can also observe that

video quality improvement will not be proportional to

the log scale of the encoding bit-rate if the higher

header information of bitstream has been corrupted.

Table 2. Average PSNR of the reconstructed vide se-
quences by decoding a bitstream with header
protection and a bit stream without header protection
except an additional feedback channel.

For the system that has a feedback mechanism, the

feedback channel can inform video encoder that par-

ticular information has been corrupted and should not

be used as reference information. Here, we assume that

this round-trip time of the system only takes a time

interval of two frames. The following frames will

choose a proper reference information to refer and the

error propagation will be halted immediately. Table 2

shows the results of this scenario and our scheme. Al-

though this scenario provides a more complex

procedure in avoiding error propagation, the proposed

method still has a better PSNR performance.

5. Conclusion

In this paper, we propose a way to protect the

header information of video bitstream in application

layer. In an error-prone channel, this scheme will pre-

vent error occurred in header information so as to use

its parameters in video decoding. Because we will not

modify the syntax of the existed standard and the re-

dundant bits can be embedded in the bitstream, this

scheme can be used in combination with any video

codecs. Besides, our method can also be applied in any

networks or transmission environments since the effort

that we made is confined in the application layer. From

experimental results, the scheme proposed in this paper

provides a better performance in comparing with the

method without header protection and the scheme with

a feedback channel. This makes the proposed method

become one of the better solutions in transmitting

video sequence in practical use.

Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05)
0-7695-2489-3/05 $20.00 © 2005 IEEE

References

[1] G.-S. Yu, M. M.-K. Liu, and M. W. Marcellin, “POCS-

based error concealment for packet video using multi-

frame overlap information,” IEEE Trans. Circuits Syst.

Video Technol., vol. 8, no. 4, pp. 422–434, Aug. 1998.

[2] Y. J. Chung, J. W. Kim, and C.-C. J. Kuo, “Real-time

streaming video with adaptive bandwidth control and

DCT-based error concealment,” IEEE Trans. Circuits

Syst. II, vol. 46, no. 7, pp. 951–956, Jul. 1999.

[3] H. Sun andW. Kwok, “Concealment of damaged block

transform coded images using projections onto convex

sets,” IEEE Trans. Image Process., vol. 4, no. 4, pp.

470–477, Apr. 1995.

[4] V. Parthasarathy, J.W. Modestino, and K. S. Vastola,

“Design of a transport coding scheme for high-quality

video over ATM networks,” IEEE Trans. Circuits Syst.

Video Technol., vol. 7, no. 2, pp. 358–376, Apr. 1997.

[5] European Telecommunication Standard Institute, ETSI:

Radio broadcast systems; Digital Audio Broadcasting

(DAB) to mobile, portable and fixed receivers, ETS 300

401, May 1997.

[6] M.G. Martini and M.Chiani, ” Proportional unequal error

protection for MPEG-4 video transmission”, IEEE Inter-

national Conference on Communications, 2001.

[7] K. N. Ngan and C. W. Yap, “Combined source-channel

video coding,” in Signal Recovery Techniques for Image

and Video Compression and Transmission, A. K. Kat-

saggelos and N. P. Galatsanos, editors, ch. 9, pp. 269-

297, Kluwer Academic Publishers, 1998

[8] L. Kondi, F. Ishtiaq, and A. K. Katsaggelos, “Joint

source-channel coding for scalable video,” Proc.2000

SPIE Conf. On Visual Communications and Image Proc-

essing, San Jose, CA, Jan. 2000.

[9] MPEG-4 Video Group, "MPEG-4 Video Verification

Model Version 18.0", ISO/IEC JTC1/SC29/WG11

N3908, January 2001, Pisa.

[10]RFC2429: C. Bormann, L. Cline, G. Deisher, T. Gardos,

C. Maciocco, D. Newell, J. Ott, G. Sullivan, S. Wenger,

and C. Zhu: "RTP payload format for the 1998 version

of ITU-T Rec. H.263 video (H.263+)", RFC2429, May

1999.

[11]Stephen B. Wicker, “Error Control Systems for Digital

Communication and Storage” pp. 330, 1995, Prentice

Hall International, Inc.

[12]Draft ITU-T Recommendation and Final Draft Interna-

tional Standard of Joint Video Specification (ITU-T Rec.

H.264 | ISO/IEC 14496-10 AVC), 2003.

[13]http://iphome.hhi.de/suehring/tml/download/,

H.264/AVC Reference Software version 9.6.

Proceedings of the Seventh IEEE International Symposium on Multimedia (ISM’05)
0-7695-2489-3/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

